
DAppendix

Distributed
Communication

In this chapter, we discuss several different strategies that allow distributed
applications to communicate. We have already provided an overview of
sockets and Remote Method Invocation (RMI) in Chapter 3. In this chapter
we provide further examples of socket programs written in Java as well as
additional program examples using RMI. In addition, we provide coverage of
CORBA which allows distributed (and possibly heterogeneous) applications to
communicate.

D.1 Sockets

A socket is defined as an endpoint for communication and is identified by
an IP address concatenated with a port number. A pair of communicating
processes communicating over a network employs a pair of sockets – one for
each process. This pair of sockets defines the connection between the pair of
communicating processes.

In Chapter 3 we examined a date server which listens to a specified port.
When it receives a connection from a client, it returns the current date and
time to the client, closes the connection, and resumes listening for more client
requests. This server is written using a single thread as servicing each client
only requires delivering the time-of-day; the duration of the connection is brief
allowing the server to service many concurrent client requests without much
delay.

However consider the situation where servicing a client requires maintain-
ing a connection with the client. As an example, consider an echo server which
simply “echoes” the exact text it receives back to the sending client. Once a
connection is established between the client and the echo server, the server
waits for text input from the client, echoing any text it receives back to the
client. The server can listen for subsequent client connections only when the
connection between the existing client is closed.

Consider if we were to implement the echo server using a single thread as
shown below:

while (true) {
// listen for connections

1011

1012 Appendix D Distributed Communication

Socket client = sock.accept();

/**
* Echo whatever is received back to the client.

* We will resume listening for subsequent

* connections only when the current client

* indicates it wishes to terminate the connection.
*/

}
In this situation, we are only able to service one client at a time as the single

thread is devoted to the current connection. Subsequent clients have to wait
for the existing connection to terminate before being serviced. Such a design
does not provide for a responsive server if we wish to quickly service incoming
client connections.

In Chapter 4 we introduced threads and this seems to address the issue
of making the server more responsive. We could multithread the server
and service each client connection in a separate thread which we will call
EchoThread. Such a design appears as:

while (true) {
// listen for connections
Socket client = sock.accept();

// pass the socket to a separate thread
// and resume listening for more requests
EchoThread echo = new EchoThread(client);
echo.start();

}
This solution allows client requests to quickly be serviced in a new thread

or by using a thread pool. However this may lead to a costly design when
we consider the typical echo client - much of the time it may be idle and only
infrequently send text to the server. Thus, we are using a separate thread on
the server to maintain a connection with each client; a connection that may
often be idle.

This design of such servers isn’t considered scalable. We define a service
as being scalable if it provides an increase in throughput corresponding to an
increase in the load upon the service. Furthermore, once throughput reaches
a point of saturation (i.e. we cannot achieve a higher rate of throughput),
any additional load should not decrease throughput. Due to the cost of using
a separate thread to maintain the state of each client connection, the server
can only allow a certain number of connections before over-burdening and
saturating the server thereby causing a longer delay when responding to each
client.

Although we are using a simple echo application as an example, the use
of a separate thread on a server to maintain the state of each client connection
may inhibit the scalability of many other client–server applications such as
web and file servers.

In Chapter 13 we introduced non-blocking I/O, which allows input and
output to be performed without blocking system calls. Consider how I/O is

D.1 Sockets 1013

import java.io.*;
import java.nio.*;
import java.nio.channels.*;
import java.net.*;
import java.util.*;
import java.nio.charset.*;

public class NBEchoServer
{

private static final int PORT = 6007;
private Charset charset;
private CharsetDecoder decoder;
private CharsetEncoder encoder;
private ByteBuffer buffer;
private ServerSocketChannel server;
private ServerSocket sock;
private Selector acceptSelector;

public NBEchoServer() throws IOException {
// Figure D.2

}

public void startServer() throws IOException {
// Figure D.3

}

public static void main(String[] args) {
try {

(new NBEchoServer()).startServer();
}
catch (IOException ioe) {

System.err.println(ioe);
}

}
}

Figure D.1 Echo server using non-blocking I/O.

ordinarily performed: a system call (that is,read()) is made and the application
blocks until the requested data (in its entirety) is available. With non-blocking
I/O, a system call is made and it immediately returns with as much data that is
currently available. It is possible that no data may be available at all, thereby
requiring the application to be coded to continually perform the non-blocking
system call until it reads any available data. However, the system can also
provide an indication whenever at least some data is available. Using this
knowledge, an application could alternatively be coded to only perform the
non-blocking system call when there is an indication some data is available.

We can design more scalable servers using non-blocking I/O rather than
using a separate thread to service each client connection. Such server designs
often allow more concurrent client connections as we don’t require the
overhead of a thread to maintain the state of each client connection. Rather,
the state of each connection is maintained by the server and a state change
is only triggered by an I/O event. Furthermore, by minimizing the overhead

1014 Appendix D Distributed Communication

required to maintain each client connection, we are minimizing response time
when responding to each client.

This does not mean that that our presentation of threads was not useful.
Rather, modern scalable servers such as web and chat servers, instant message
servers, etc. typically rely on both threads and non-blocking I/O to service
a large number of client connections with minimal response latency. In the
following section we cover the non-blocking I/O features provided in Java.

D.1.1 Non-Blocking I/O in Java

In this section, we present the echo server using non-blocking I/O in Java. This
program is shown in Figure D.1. There are several new issues to be covered in
this program including:

1. character sets;

2. buffers;

3. channels;

4. selectors.

Character sets are sets of character representations. Example character
representations include the Roman character “A” and the Greek character �.
Each character within a character set is typically assigned a numeric value
and there are many different mappings of characters to numeric values; ASCII
and Unicode are two such examples. As I/O over a network typically involves
transmissions of byte streams, the numeric value for each character must be
encoded and decoded to and from a sequence of bytes.

A buffer is a linear sequence of elements containing primitive types (i.e.
byte, char, int, etc.) A buffer has associated with it a capacity and position. The
capacity refers to the number of elements the buffer may hold. The buffer’s
capacity is established when the buffer is first allocated and it cannot change.
The position of a buffer refers to the logical index of the next element to be read
or written. After a number of elements have been placed into a buffer, reading
the data from the buffer first requires setting the position back to zero.

Channels serve as conduits for performing I/O from files, hardware
devices, and sockets. Typically channels and buffers work in tandem whereby
the contents of a buffer may be written to or read from a channel.

Selectors provide the mechanism for performing non-blocking I/O in Java.
Selectors are used to multiplex many I/O channels concurrently. Rather than
blocking while waiting for input from one channel (thereby ignoring the
remaining channels), a selector can simultaneously wait for I/O readiness from
any number of channels. When I/O is available on one (or more) channels, the
selector then indicates which channel(s) are ready. I/O can then be performed
on available channels.

Before we proceed with the necessary details of non-blocking I/O in Java,
let’s first illustrate how to run the echo server shown in Figure D.1. For the
purposes of this discussion, let’s assume the server is running on the localhost
with IP address 127.0.0.1.

The server is started with the command

D.1 Sockets 1015

public NBEchoServer() throws IOException {
charset = Charset.forName("ISO-8859-1");

CharsetDecoder decoder = charset.newDecoder();

CharsetEncoder encoder = charset.newEncoder();

ByteBuffer buffer = ByteBuffer.allocate(256);

server = ServerSocketChannel.open();

sock = server.socket();

sock.bind(new InetSocketAddress(PORT));

server.configureBlocking(false);

acceptSelector = Selector.open();

server.register(acceptSelector, SelectionKey.OP ACCEPT);

}
Figure D.2 Constructor for NBEchoServer.

java NBEchoServer

and is now listening for client connection requests to port 6007. A client may
connect to the server using telnet by invoking the command

telnet 127.0.0.1 6007

A connection has now been established between the client and echo server.
When the client enters text, it is sent to the server and echoed back to the client.
When the client wishes to terminate the connection, it enters a period.

With this necessary material covered, we are now ready to present the
details in Figure D.1. We will first examine the constructor shown in Figure
D.2.

The character set to be used is ISO-8859-1 as this is suitable for most
Western character sets. We then create a character set encoder and decoder
used to encode and decode between byte streams and the specified character
set.
The statement

buffer = ByteBuffer.allocate(256);

creates a buffer containing byte elements with a capacity of 256 bytes. We then
create a ServerSocketChannel with the

server = ServerSocketChannel.open();

statement. The socket associated with this channel is then retrieved by invoking
the socket()method on the ServerSocketChannel. Initially the ServerSocket
is unbound, the bind() method is used to bind this socket to the default port.
The statement server.configureBlocking(false); configures the socket
channel as non-blocking.

We then open a selector that we will use to manage the multiplexed
channels using the open() method which is a static method in the Selector
class. Channels that are to be managed by the selector must first register with
the selector and include the type of readiness the selector will wait upon. The
statement

server.register(acceptSelector, SelectionKey.OP ACCEPT);

1016 Appendix D Distributed Communication

public void startServer() throws IOException {
while (true) {

acceptSelector.select();

Set keys = acceptSelector.selectedKeys();

for (Iterator itr = keys.iterator(); itr.hasNext();) {
SelectionKey key = (SelectionKey)itr.next();

itr.remove();

if (key.isAcceptable()) {
SocketChannel client = server.accept();

client.configureBlocking(false);

SelectionKey clientKey = client.register

(acceptSelector, SelectionKey.OP READ);

}
else if (key.isReadable()) {

SocketChannel clientChannel =

(SocketChannel)key.channel();

if (clientChannel.read(buffer) == -1) {
key.cancel();

clientChannel.close();

}
else {

buffer.flip();

String message

= decoder.decode(buffer).toString();

if (message.trim().equals(".")) {
clientChannel.write(encoder.encode

(CharBuffer.wrap("BYE"));

key.cancel();

clientChannel.close();

}
else {

buffer.flip();

clientChannel.write(buffer);

}
}
buffer.clear();

}
}

}
}

Figure D.3 startServer() method for the non-blocking echo server.

registers the socket channel server indicating the type of readiness the selector
can expect from this channel is SelectionKey.OP ACCEPT - a connection request
from a client.

Once we have created an instance of NBEchoServer, we invoke the
startServer() method in Figure D.3. The echo server first invokes the

D.1 Sockets 1017

select()method of the selector. Even though we are performing non-blocking
I/O, the call to select() will block until at least one of the registered channels
is ready. Recall we initially only register the socket channel server; the only
readiness we can expect at first from this selector is connect requests from
clients.

After returning from select(), we then extract a set of SelectionKeys
with the call to acceptSelector.selectedKeys(); This set of keys represents
all the I/O that is available on all channels registered with the selector. It is
possible to test the type of readiness each selection key is available to perform.
For the purposes of our echo server, each selection key may be either (1) a
connection request (isAcceptable() returns true), or (2) data is available to
be read from the channel (isReadable() returns true.)

Let’s consider the case where our echo server has received its first
connection request. In this instance, we then call the accept() method of
the server socket channel to accept the client connection. Ordinarily accept()
is a blocking call but since we have configured the channel as non-blocking,
accept() will return immediately, possibly returning a null value. However,
we know accept() will return a socket connection as the channel readiness
indicated a connection request; that is, isAcceptable() for the SelectionKey
returned true. We then retrieve the channel associated with the client socket
connection with the statement client = server.accept();, configure this
channel non-blocking as well, and finally register the client channel with
the selector. In this situation, this channel will register its readiness as
SelectionKey.OP READ indicating to the selector the type of readiness it can
expect from this channel is that data is available to be read. Because we have
configured the channel associated with the client connection as non-blocking,
subsequent reads from this channel will return with whatever data is available
on the channel. However we will only read from this channel when the selector
indicates I/O readiness of the channel.

We now have two channels registered with the selector: (1) the server socket
channel awaiting further client connections, and (2) the channel associated
with the first client connection. Subsequent calls to the select() method of
the selector may indicated readiness on either of these channels.

If the selection key is readable (isReadable() returns true), this indicates
a client has written data to the socket. The echo server must read this data from
the available channel and echo it back to the client. We first retrieve the channel
with available data with the statement:

clientChannel = (SocketChannel)key.channel();

Recall our earlier discussion that channels and buffers work in tandem;
available data from a channel must be read into a buffer. We read the data from
the channel into the buffer with the clientChannel.read(buffer); statement.
However, after reading the contents of the channel into the buffer, the position
of the buffer is set to the next element to be read into the buffer. To extract the
contents of the buffer, we must set the position of the buffer back to zero with
the statement buffer.flip(); We then decode the contents of the buffer into
a String object so we may test if the client wishes to terminate the connection
(by entering a period “.”). If they do not wish to terminate the connection, we
write (i.e. echo) the contents of the buffer back to the client channel with the
statement clientChannel.write(buffer);. However it is important to note

1018 Appendix D Distributed Communication

that we must flip() the buffer again before writing it back to the channel. This
is necessary because the position of the buffer was modified when we decoded
the buffer into a String object. Before we resume testing the selector, we must
first clear the buffer to prepare it for new reads.

Lastly, notice how we handle the situation if the client indicates it wishes
to terminate the connection (by entering a period “.”) or if the client has
closed its channel. This is detected by the server when the read() method
from the channel returns -1. In either of these situations, we must first cancel
the registration of the channel with the selector by invoking the statement
key.cancel(); followed by closing the channel on the server side.

D.2 UDP Sockets

Our coverage of sockets so far has only considered connection-oriented TCP
sockets. When we say TCP sockets are connection-oriented, we are referring to
the connection established between the socket pair. This connection behaves
much like a telephone call taking place between two people which we will
name Bob and Alice. Suppose Bob wishes to call Alice; he dials her telephone
number and waits for her to pick up the receiver. When she does so, there is
a connection established between the two and is only terminated when Bob
or Alice hangs up. We see evidence of the connection in our Java TCP socket
programs with the InputStream and OutputStream that is available with a
socket.

Furthermore, TCP sockets are considered reliable meaning that all data
will be reliably transmitted across the socket. TCP provides reliability through
acknowledgments - upon correct receipt of data, the receiver sends an acknowl-
edgement to the sender. TCP also maintains flow control between communicat-
ing hosts which prevents a fast sender from overloading a slow receiver with
data. Lastly, TCP provides congestion control which prevents a sender from
delivering too much data on the network thereby saturating overall network
performance. The fundamental distinction between flow and congestion con-
trol is that flow control is an issue between a sender and receiver, congestion
control is a network-wide issue.

TCP is used for a majority of Internet protocols including HTTP, FTP, SMTP,
and Telnet which require the reliability provided by TCP sockets. For example,
web clients use HTTP to reliably download a file from a web server, electronic
mail users require the reliability of SMTP to receive and deliver email. However,
the reliability, flow, and congestion control provided by TCP comes at the
price of increased overhead. This overhead typically results in the data being
delivered more slowly than a delivery mechanism that does not provide any
reliability guarantees.

UDP sockets are connection-less and unreliable: there is no connection
established between communicating hosts and there is no guarantee data
will be reliably delivered across the socket. Because UDP does not incur the
overhead of TCP, data delivered using UDP arrives more quickly than with
TCP. An unreliable protocol such as UDP is appealing to applications that can
tolerate a certain level of packet loss such as streaming audio and video where
a few lost packets may not even be noticeable to the viewer.

D.2 UDP Sockets 1019

D.2.1 UDP Date Server

In this section we construct an application that returns the current date and
time using UDP sockets similar to the TCP-based solution first shown in Chapter
3. The server will listen to port 6013 (which we chose arbitrarily) for client
requests. The two key Java classes in use with UDP are DatagramSocket
and DatagramPacket. A DatagramSocket is used to establish a UDP socket.
Unlike TCP-based sockets which distinguish between server and client sockets
(ServerSocket and Socket), a DatagramSocket is used for both servers and
clients.

As described above, UDP sockets are connection-less. This means there
is no connection - hence no InputStream or OutputStream - available to
communicate across. All data - including the address and port it is being
delivered to - is encapsulated into a DatagramPacket. The DatagramPacket
is delivered using the DatagramSocket. Earlier in this Section we used a
telephone conversation as an analogy of connection-oriented TCP sockets
where addressing (i.e. a telephone number) is only necessary to establish
the connection. Once the connection is established, it can be used to send
and receive data without further addressing. The equivalent analogy for UDP
sockets is the postal system where communication is connection-less and takes
place using letters. Unlike in a connection-oriented system where an address is
only necessary during connection establishment, each Datagrampacket must
contain the address of the receiver.

With this basics of UDP established, let’s first look at the Date client shown
in Figure D.4.

The client first establishes a DatagramSocket with the statement:
server = new DatagramSocket();

This establishes a socket on the client system binding the socket to an arbitrary
port number. Because UDP is unreliable, it is possible the client may wait
for a response from the server that it may never receive. We will set the
timeout of the socket to 5000 milliseconds (5 seconds) with the statement
theSocket.setSoTimeout(5000);. If the socket times out, an IOException
will be thrown.

The client will then construct a DatagramPacket with zero bytes of data,
the datagram will also include the IP address of the server (which we will use
the localhost or 127.0.0.1) and the port the server is listening to (6013). This
is accomplished with the statement:

sendPacket = new DatagramPacket(new byte[0],0,server,PORT);

Why zero bytes of data? Well, the client is simply sending an empty datagram
to the server that indicates it would like the current date and time. The server
will send back to the client a DatagramPacket with the date and time as its
data.

Before sending the empty packet to the server with the statement the-
Socket.send(sendPacket);, the client will first construct a DatagramPacket
of size BUFFER SIZE that will be used to store the date and time it receives from
the server. This is accomplished with the statements:

byte[] buffer = new byte[BUFFER SIZE];
receivePacket = new DatagramPacket(buffer, buffer.length);

1020 Appendix D Distributed Communication

import java.net.*;

import java.io.*;

public class UDPDateClient {
public static void main(String[] args) throws IOException {

final int PORT = 6013;

final int BUFFER SIZE = 256;

DatagramSocket theSocket = null;

try {
theSocket = new DatagramSocket();

theSocket.setSoTimeout(5000);

InetAddress server = InetAddress.getByName("127.0.0.1");

// construct a zero-length packet to send to the server

DatagramPacket sendPacket =

new DatagramPacket(new byte[0],0,server,PORT);

// construct a packet to receive a response from the server

byte[] buffer = new byte[BUFFER SIZE];

DatagramPacket receivePacket =

new DatagramPacket(buffer, buffer.length);

// send the packet over the socket

theSocket.send(sendPacket);

// wait for a response

theSocket.receive(receivePacket);

// extract the date from the datagram

byte[] data = receivePacket.getData();

int length = receivePacket.getLength();

String currentDate = new String(data, 0, length);

System.out.println(currentDate);

}
catch (IOException ioe) {

System.err.println(ioe);

}
finally {

if (theSocket != null)

theSocket.close(); }}
}

Figure D.4 Date client using UDP sockets.

The client then delivers the datagram sendPacket to the socket and waits to
receive the result with theSocket.receive(receivePacket);. The response
from the server will be encapsulated into the receivePacket datagram. The
data portion of the DatagramPacket is delivered as an array of bytes which the
client must extract using the getData() method of the DatagramPacket class.

D.2 UDP Sockets 1021

import java.net.*;
import java.io.*;

public class UDPDateServer
{

public static void main(String[] args) throws IOException {
final int PORT = 6013;
DatagramSocket server = null;

try {
// create a Datagramsocket listening to the default port
server = new DatagramSocket(PORT);

// the packet for receiving empty datagrams
DatagramPacket receivePacket =

new DatagramPacket(new byte[1],1);

while (true) {
server.receive(receivePacket);

// get the IP address and the port of the sender
InetAddress remoteAddr = receivePacket.getAddress();
int remotePort = receivePacket.getPort();

// record the current date and extract its byte equivalent
String currentDate = (new java.util.Date()).toString();
byte[] data = currentDate.getBytes("ISO-8859-1");

DatagramPacket sendPacket = new
DatagramPacket(data, data.length, remoteAddr, remotePort);
server.send(sendPacket);

}
}
catch (IOException ioe) {

System.err.println(ioe);
}
finally {

if (server != null)
server.close();

}
}

}
Figure D.5 Date server using UDP sockets.

The client will also determine the length of the data field with the getLength()
also in the DatagramPacket class. Using the data and its length, the client then
constructs a String object of the current date and time.

With the role of the client established, let’s now look at the server side
of the application as shown in Figure D.5. The server first establishes a
DatagramSocket and listens to port 6013 for client requests with the statement:

server = new DatagramSocket(PORT);

1022 Appendix D Distributed Communication

The server then constructs a 1-byte DatagramPacket for receiving client
requests. As noted earlier, the client will not send any data in the datagram it
delivers to the server so it might make sense for the server to also construct
a datagram with zero bytes of data to receive client requests. However,
some implementations of the Java virtual machine (JVM) require a data field
containing at least 1 byte when receiving data and therefore we adopt this
conservative approach in this text. The server then awaits client requests with
the statement:

server.receive(receivePacket);

When the server receives a client request, it will respond with the current date
and time. However, the server must know the IP address and port of the client
to send this data to. (Recall with TCP connection-oriented sockets this was not
an issue as there was an InputStream and OutputStream associated with the
socket.) The server will extract this information with the statements

InetAddress remoteAddr = receivePacket.getAddress();
int remotePort = receivePacket.getPort();

The server then determines the current date (as a String object) and gets the
byte equivalent using the getBytes() method of the String class. With the
address and port of the remote system and the current date as data, the server
then creates a new DatagramPacket and delivers it to the sender.

D.3 Remote Method Invocation

Remote method invocation, or (RMI), is a Java feature that allows a thread
to invoke a method on a remote object. Objects are considered remote if they
reside in a different Java Virtual Machine (JVM). Therefore, the remote object
may be in a different JVM on the same computer or on a remote host connected
by a network. By allowing a Java program to invoke methods on remote objects,
RMI makes it possible for users to develop Java applications that are distributed
across a network.

Recall from Chapter 3 that RMI implements the remote object using stubs
and skeletons. A stub is a proxy for the remote object; it resides with the client.

import java.rmi.*;

public interface RemoteChannel

extends Remote

{
public abstract void send(Object item) throws

RemoteException;

public abstract Object receive() throws

RemoteException;

}
Figure D.6 The RemoteChannel interface.

D.3 Remote Method Invocation 1023

When a client invokes a remote method, it is this stub for the remote object that
is called.

In this section, we build a distributed message-passing solution to the
producer–consumer problem that uses RMI. The message passing solution to
the producer–consumer was first presented in Chapter 4. This distributed
solution will consist of a remote object for messages that will be passed by
reference, allowing the producer and consumer threads to invoke the send()
and receive() methods remotely.

D.3.1 Remote Objects

We define remote objects by first declaring an interface that specifies the
methods that may be invoked remotely. In Chapter 3 we defined the Channel

import java.util.*;

import java.rmi.server.UnicastRemoteObject;

import java.rmi.*;

public class MessageQueue UnicastRemoteObject

implements RemoteChannel

{
private Vector queue;

public MessageQueue() throws RemoteException {
queue = new Vector();

}

public synchronized void send(Object item)

throws RemoteException {
// Figure D.8

}

public synchronized Object receive()

throws RemoteException {
// Figure D.8

}

public static void main(String args[]) {
try {

RemoteChannel server = new MessageQueue();

// Bind this object instance to the name "MessageQueue"

Naming.rebind("MessageQueue", server);

}
catch(Exception e) {

System.err.println(e);

}
}

}
Figure D.7 Implementation of the RemoteChannel interface.

1024 Appendix D Distributed Communication

interface which specifies the send() and receive() methods for message
passing. To provide for remote objects, this interface must also extend the
java.rmi.Remote interface, which identifies objects implementing this inter-
face as being remote. Further, each method declared in the interface must throw
the exception java.rmi.RemoteException. For remote objects, we provide the
RemoteChannel interface shown in Figure D.6.

The class that defines the remote object must implement the RemoteChannel
interface (Figure D.7). In addition to defining the methods of the interface, the
class must also extend java.rmi.server.UnicastRemoteObject. Extending
UnicastRemoteObject allows the creation of a single remote object that listens
for network requests using RMI’s default scheme of sockets for network
communication. This object also includes amain()method. The main()method
creates an instance of the object and registers with the RMI registry running on
the server with the rebind() method. In this case, the object instance registers
itself with the name MessageQueue. Also note that the constructor for the
MessageQueue class must throw a RemoteException if a communication or
network failure prevents RMI from exporting the remote object.

Note that the implementations of the send() and receive() methods are
declared as synchronized to ensure thread-safety. We can also use Java thread
synchronization, described in Chapter 6, to control concurrent access to remote
objects.

D.3.2 Access to the Remote Object

Once an object is registered on the server, a client (as shown in Figure D.9) can
get a proxy reference to this remote object from the RMI registry running on the
server by using the static method lookup() in the Naming class. RMI provides
a URL-based lookup scheme using the form rmi://host/objectName, where
host is the IP name (or address) of the server on which the remote object
objectName resides. objectName is the name of the remote object specified by
the server in the rebind() method (in this case, MailBox.) Once the client has a
proxy reference to the remote object, it creates separate producer and consumer
threads, passing to each thread a proxy reference to the remote object. The

// This implements a non-blocking send

public synchronized void send(Object item)

throws RemoteException {
queue.addElement(item);

}

// This implements a non-blocking receive

public synchronized Object receive()

throws RemoteException {
if (queue.size() == 0)

return null;

else

return queue.remove(0);

}
Figure D.8 send() and receive() methods.

D.3 Remote Method Invocation 1025

import java.rmi.*;

public class Factory

{
public Factory() {

// remote object

RemoteChannel mailBox;

try {
mailBox = (RemoteChannel)Naming.lookup

("rmi://127.0.0.1/MessageQueue");

Thread producer = new Thread(new Producer(mailBox));

Thread consumer = new Thread(new Consumer(mailBox));

producer.start();

consumer.start();

}
catch (Exception e) {

System.err.println(e);

}
}

public static void main(String args[]) {
Factory client = new Factory();

}
}

Figure D.9 The client factory.

source-code fragments for the producer and consumer threads are shown in
Figures D.10 and D.11. Note that the producer and consumer threads invoke
the remote methods send() and receive() as routine method invocations.
However, as these methods can throw a java.rmi.RemoteException, they
must be placed in try-catch blocks. Otherwise applications invoking remote
methods are designed as if they are invoking ordinary local methods.

D.3.3 Running of the Programs

We now demonstrate the steps necessary to run the example programs. For
simplicity, we are assuming that all programs are running on the local host.
However, communication is still considered remote, because the client and
server programs are each running in their own JVM.

1. Compile all source files.

2. Generate the stub and skeleton. The tool RMIC is used to generate the stub
and skeleton class files, which is done by the user entering

rmic MessageQueue

on the command line; this create the files MessageQueue Skel.class
and MessageQueue Stub.class. (If you are running this example on two

1026 Appendix D Distributed Communication

import java.util.*;

class Producer implements Runnable

{
private RemoteChannel mbox;

public Producer(RemoteChannel m) {
mbox = m;

}

public void run() {
Date message;

while (true) {
// nap for awhile

SleepUtilities.nap();

// produce an item and enter

// it into the buffer

message = new Date();

System.out.println("Producer produced " +

message);

try {
mbox.send(message);

} catch (java.rmi.RemoteException re) {
System.err.println(re);

}
}

}
}

Figure D.10 Producer thread.

different computers, make sure that all the class files—including the stub
classes—are available on each computer. It is possible to load classes
dynamically using RMI, a topic beyond the scope of this text but covered
in texts mentioned in the Bibliographical Notes.)

3. Start the registry and create the remote object. To start the registry on UNIX
platforms, the user may type

rmiregistry &

For Windows, the user may type
start rmiregistry

This command starts the registry with which the remote object will
register. Next, create an instance of the remote object with

java MessageQueue

This remote object will register using the name MessageQueue.

4. Reference the remote object. The statement
java Factory

D.4 Other Aspects of Distributed Communication 1027

import java.util.*;

class Consumer implements Runnable

{
private RemoteChannel mbox;

public Consumer(RemoteChannel m) {
mbox = m;

}

public void run() {
Date message;

while (true) {
// nap for awhile

SleepUtilities.nap();

// consume an item from the buffer

try {
message = (Date)mbox.receive();

if (message != null)

System.out.println("Consumer consumed "

+ message);

} catch (java.rmi.RemoteException re) {
System.err.println(re);

}
}

}
}

Figure D.11 Consumer thread.

is entered on the command line to start the client factory. This program
will get a proxy reference to the remote object MessageQueue, and will
create the producer and consumer threads, passing to each thread the
proxy reference to the remote object. The producer and consumer threads
can now invoke the methods send() and receive() on the remote object.

D.4 Other Aspects of Distributed Communication

Distributed communications is an important and evolving area of computing.
Therefore, there are many aspects to distributed communications, and many
solutions to the common challenges found there. This section discusses CORBA,
an alternative to RMI and how remote objects can register themselves with
services such as RMI and CORBA.

D.4.1 CORBA

RMI is a technology that allows threads to invoke methods on distributed
objects. RMI is native Java technology, however, so it requires all distributed

1028 Appendix D Distributed Communication

applications to be written in Java. Many existing systems that we might also
want to be distributed are written in C, C++, COBOL, or Ada. No communication
protocol discussed so far provides a convenient mechanism for these disparite
applications to communicate.

The Common Object Request Broker Architecture (CORBA) is middle-
ware—an intermediate software layer—that allows heterogeneous client and
server applications to communicate. For example, a C++ program could
use CORBA to access a database service written in COBOL. CORBA allows
applications written in different languages to communicate using an interface-
definition language (IDL) and an Object Request Broker (ORB). An IDL
allows a distributed object—such as a database—to describe an interface to
the services that it provides. The IDL is a generic programming language;
it allows a service to describe itself independently of any specific language.
To communicate with a server, a client needs to communicate with only the
interface specified with the IDL. The server object implements the interface
specified by the IDL. The ORB forms the backbone of CORBA, allowing clients
to invoke methods on distributed objects and accept return values. There is
an ORB on both the client and the server side, and a protocol, the Internet
InterORB Protocol (IIOP), that specifies how the ORBs can communicate.

When a client application requests a reference for a remote object, it is
the responsibility of the client ORB to find the remote object in the distributed
system. The client ORB is also responsible for routing the remote method calls
to the appropriate server, and for accepting results from the server. The server
ORB allows the server to register new CORBA objects and is also responsible for
accepting requests from client ORBs for invoking methods on the server. The
server ORB also passes return values back to the client.

A CORBA system works as follows. Once a client has a reference for a remote
object, any method invocations for this object are made through the client-side
stub. This stub uses the client’s ORB to communicate with the server. When
the server ORB receives a client request for invoking a method, it calls the
appropriate skeleton, which in turn invokes the implementation of the remote
method on the server. Return values are passed back along the same path. This
situation is shown in Figure D.12.

In many ways, the ORB behaves much like RMI. However RMI is Java-to-Java
technology. CORBA provides interoperability between heterogeneous clients
and servers, allowing applications that are written in different languages to
communicate.

D.4.2 Object Registration

Both RMI and CORBA are distributed object systems: Objects are distributed
across a network and applications can communicate with the distributed
objects. An important feature of such systems is an object-registration service,
with which an object registers itself. Applications that wish to use a distributed
object obtain a reference to the object through this service. The rmiregistry
acts as the registration service for RMI. Once the registry is started, a remote
object registers itself with a unique name using the Naming.rebind()method.
Clients use this name when they request a reference to the remote object from
the registration server. Using RMI, a client obtains a reference to a remote object

D.5 Web Services 1029

using the Naming.lookup()method. In a CORBA system, the ORB on the server
side is responsible for providing the registration service.

D.5 Web Services

One of the most rapidly expanding and changing computing technologies is
web services. These services were created to work over the Internet, but in
fact are used throughout LANs and WANs, within companies and even within
houses. These services include a wide range of functions and features, but their
key aspects are that they use a standardized XML-based messaging system, and
that they are operating system independent. Most of them are self-describing
and self-discovering. That is, they publish a description of the service they
provide, such that other web services can interoperate with them without any
customization or programming. They can also find one another. For example, a
portal service could need a stock ticker service and could locate it and integrate
it automatically. This section discusses the technologies that compose web
services.

At the core of these services is the eXtensible Markup Language (XML),
which is at once simple and powerful. It is similar to the HTML language in
which most web pages are written. HTML has a defined syntax and structure.
In contrast, XML is self-describing. A given XML document starts by defining
what it contains, and then providing the contents. The resulting flexibility has
made XML a communication standard for entities (such as companies) wishing
to exchange data with others. Previously, a program at each end would have
had to know the details of the data to be exchanged, and would have been
specifically coded to exchange that data. Now, an entity can send XML and
without prior communication, and the receiver can decipher the format and
extract the data.

client

reference to
CORBA object

ORB

stub

server

CORBA object

ORB

skeleton

Internet InterORB Protocol (IIOP)

Figure D.12 CORBA model.

1030 Appendix D Distributed Communication

D.5.1 Web Services Sub-layers

Fundamentally, systems communications is made up of layers, much like
a parfait. The physical layer is below the data-link layer, which is below
the network layer, and so on up to the application layer. At this top layer
applications communicate with each other, and they leave it to the other layers
to assure that the communication happens.

The application layer can be further divided into sub-layers, as new services
are created for higher-level functionality. Web services are of this model. They
are at the application layer, and they depend on the underlying layers to
provide a transport. The transport can be over HTTP and SMTP on top of TCP/IP
for example.

Within the web-services application layer is the XML messaging layer.
This layer encodes messages in standard XML format, for receipt by an XML-
understanding service. Currently, eXtensible Markup Language - Remote Pro-
cedure Call (XML-RPC) and Simple Object Request Protocol (SOAP) implement
this sub-layer.

The next sub-layer is service description. It provides a public description of
the web service. This description is intended for other web services. If they use
the same web-services technologies, they will be able to understand the service
description and use the service that it describes. The Web Services Description
Language (WSDL) currently provides this function.

The final sub-layer is service discovery, handled by the Universal Descrip-
tion, Discovery, and Integration (UDDI) protocol. By using service discover, a
web service can find others that provide services it needs. It can then use the
service description to understand how to talk to the other services, and the
XML messaging layer to execute those other services, remotely. In this manner,
a new application, based on the Internet and its composite technologies, can
be designed and developed quickly and cleanly, building on services already
written and deployed by others.

Several companies have announced and are deploying competing web
services frameworks. Microsoft has .Net, IBM has its Web Services, and Sun
has Sun Open Net Environment (Sun ONE). Also, a coalition has created Project
Liberty to compete with .Net. Fortunately for programmers and web-services
providers, all of these superstructures are based on the same core sub-layers
and technologies (SOAP, WSDL, and UDDI. The rest of this section explores these
technologies.

D.5.2 XML-RPC and SOAP

XML-RPC can be thought of as a subset of SOAP. Therefore, XML-RPC is described
first, and then differences between it and SOAP are discussed.

XML-RPC is a method for calling remote procedures via XML. The call is
done via an HTTP POST call which is transported over HTTP. The call is in XML
format, as is the response. In essence, a remote web server can be asked to
execute a procedure, rather than just return a web page. As with standard
RPC, XML-RPC can call a specific procedure, pass it parameters, and receive an
XML-formatted response. XML-RPC is not a proper replacement for CORBA or
other complex communications frameworks, because it has no idea of objects
or other complex data types. It can be used to glue services together, or to fairly

D.5 Web Services 1031

trivially turn a web server into a web services provider (by XML-RPC enabling
its functions).

Here is an example of a simple XML-RPC call routed to the “RPC2” responder
on server “test.mydomain.com”. The RPC being called is “method-to-call” and
the parameter being passed is the four-byte integer (“i4”) “my-value”:

POST /RPC2 HTTP/1.0
User-Agent: Frontier/5.1.2 (WinNT)
Host: test.mydomain.com
Content-Type: text/xml
Content-length: 181

<?xml version="1.0"?>
<methodCall>

<methodName>method-to-call</methodName>
<params>
<param>
<value><i4>my-value</i4></value>
</param>
</params>

</methodCall>

The above call might result in the following response encapsulating the “Return
Value” answer:

HTTP/1.1 200 OK
Connection: close
Content-Length: 158
Content-Type: text/xml
Date: Fri, 17 Jul 1998 19:55:08 GMT
Server: test.mydomain.com Frontier/5.1.2-WinNT

<?xml version="1.0"?>
<methodResponse>

<params>
<param>
<value><string>Return Value</string> </value>
</param>
</params>

</methodResponse>

As should be clear from the example, there is flexibility built into the
XML-RPC interactions, allowing multiple parameters of various types to be sent
and varying responses to be returned.

XML-RPC libraries are available for all of the common programming
languages. Further, support is built into Apache and other web servers. Because
of its wide-spread support, XML-RPC-based services can quickly be deployed,
and can be called easily from almost any program that has web access.

SOAP takes XML-RPC one step further, expanding the features and function-
ality toward a more full-fledged remote procedure mechanism. SOAP is under
consideration to become a standard by the W3C organization. Even as a draft
standard, it has garnered widespread adoption. SOAP has been implemented

1032 Appendix D Distributed Communication

by many languages and there are hundreds of SOAP-based web services on the
Internet (and many more within companies).

Like XML-RPC, SOAP is XML-based. It has more data types that XML-RPC, and
adds fundamental features like compound types, referencing external names-
paces (for pre-defined data schemas for example), and fault management. It
can be transported over any protocol, but HTTP is the most common one.
SOAP has the advantage of being platform, operating system, and language
independent, and as such is a very functional way of connecting programs and
services together.

D.5.3 WSDL

For web services to be more than the sum of their parts, they need to work
together seamlessly. WSDL is a specification for describing web services, using
XML as the description language. In this way, web services can understand
each other via XML descriptions and can communicate via XML messages (such
as SOAP calls).

WSDL needs to provide several bits of information about a web service to
enable the services use by others. These bits include:

1. the name of the web service,

2. the data types used between the client and the server,

3. details of the messages that could be sent or received by the server,

4. the “portType” that combines multiple messages into a complete com-
munication,

5. the binding of the service (i.e. what protocol to use to call it and how to
do so),

6. and the address (i.e. URL) of the service.

This definition of a service is carefully designed to be able to be automat-
ically generated based on the SOAP implementation of the service. In total,
an existing web site could have SOAP services layered on top of its current
functions, and then have WSDL definitions of those services automatically
generated such that other web services understand how to call it.

Like SOAP, WSDL has been submitted to the W3C organization for consider-
ation as a standard. WSDL is being used widely to describe web services which
are then called via SOAP.

D.5.4 UDDI

Once the web services are written, and their interfaces are published, there
needs to be a mechanism for them to be located. Humans or computers can
then search for a web service that best meets their needs and can then make
use of that best-fitting service.

UDDI is both a specification for building a distributed directory of WSDL-
described services, and an operational registry. The registry allows any web
service to be published, and all web services published there to be searched.

D.6 Summary 1033

The UDDI directory is divided into three categories. The “white pages” list
per-business information such as name, description, and contact information.
The “yellow pages” lists companies and web services available based on their
category and type, industry, product, and so on. The “green pages” has the
technical information about the web services listed in the yellow pages. These
details include the address of the web service and a pointer to the external
specification of the service. UDDI is not limited to SOAP-based services. Other
services can be registered there as well, including CORBA and Java RMI services.

Although the idea of UDDI is straight-forward, distributed directory
services are anything but that. The UDDI specification covers such complexities
as replication, security, schema versioning, and internationalization. Using
UDDI is simplified by use of the libraries provided by the many languages
that support it.

Humans can search for UDDI-registered web services via the web at
http://uddi.microsoft.com and http://www-3.ibm.com/services/uddi.
Programatically, web service lookup is available via SOAP calls to
the web sites http://uddi.microsoft.com/inquire and http://www-
3.ibm.com/services/uddi/inquiryapi.

As a simplistic programming example, consider one web service trying to
locate another that provides weather information. The first call is to locate any
business providing this service, asking the directory at uddi-org:

<find business generic=’’1.0’’ xmlns=’’urn:uddi-org:api’’>
<name>weather</name>
</find business>

This call could return zero or more matches (in XML format). The returned
information includes the full service name, a servicekey and businesskey for
each. These keys are unique identifiers for the business which is providing the
service, and the service itself.

Next, our program could get the white pages entry for the business by
using the UDDI “get businessDetail” call and giving it the businesskey. Also, a
given returned-service-key could be used to get the service details:

<get serviceDetail generic’’1.0’’ xmlns=’’urn:uddi-org:api’’>
<servicekey>returned-service-key</servicekey>
</get serviceDetail>

The information returned from this call is enough for our program to execute
a remote procedure call to the web service.

The combination of web service remote procedure calls, service descrip-
tions, and service registry and lookup provides a very powerful platform for
arbitrary web-enabled programs to find one another and use each others ser-
vices. This power has lead to the rapid rise of web services-based solutions
and growing momentum for companies to both design new web services
applications and web services-enable existing applications.

D.6 Summary

In this chapter, we presented several methods that allow distributed appli-
cations to communicate. The first, a socket, is defined as an endpoint for

1034 Appendix D Distributed Communication

communication. A connection between a pair of applications consists of a pair
of sockets, one at each end of the communication channel. RPCs are another
form of distributed communication. An RPC occurs when a process or thread
calls a procedure on a remote application. RMI is the Java version of an RPC.
RMI allows a thread to invoke a method on a remote object just as it would
invoke a method on a local object. The primary distinction between RPCs and
RMIs is that the data being passed to a remote procedure in the latter case
are in the form of an ordinary data structure. RMI allows objects to be passed
in remote method calls. We also discussed CORBA, a technology that allows
communication among distributed applications written in different languages.
RMI and CORBA are both distributed object systems. An important feature of
these systems is an object-registration service that registers distributed objects.
Clients contact the registration service when they wish to locate a distributed
object.

Web services are similar to RPCs, but are platform, operating system, and
language independent. They are XML-based. They include not only allow for
remote procedure calls, but also for service description and service discovery.

Exercises

D.1 Write a socket-based Fortune Teller server using non-blocking I/O. Your
program should create a server that listens to a specified port. When
a connection is received by a client, the server should respond with a
random fortune chosen from its database of fortunes.

D.2 Write a socket-based multithreaded echo server without using non-
blocking I/O. Create a new thread to service each incoming connection.
Contrast this design to the program shown in Figure D.1.

D.3 Design an HTTP web server using non-blocking I/O.

D.4 Design a chat client-server application using non-blocking I/O.

D.5 Describe why servicing client connections in a thread pool may still
limit the scalability of server designs.

D.6 Implement Algorithm 3 from Chapter 6 using RMI.

D.7 This chapter provided a distributed solution to the bounded-buffer
problem that used message passing. Another solution to the bounded-
buffer problem used Java synchronization; it was shown in Chapter 6.
Modify this second solution using RMI, so that the solution works in a
distributed environment.

D.8 We solved the readers–writers problem by using Java synchronization
in Chapter 6. Modify that solution so that it works in a distributed
environment using RMI.

D.9 Implement a distributed solution to the dining-philosophers problem
using RMI.

D.10 Explain the differences and similarities between RMI and CORBA.

Bibliographical Notes 1035

Bibliographical Notes

Hitchens [2002] presents a thorough discussion of non-blocking I/O in
Java. Welsh et al. [2001] and Nian-Min et al. [2002] discuss architectures
of high performance Internet servers. Kurose and Ross [2005] and Harold
[2000] describe socket programming with an emphasis on Java. Grosso
[2002] covers RMI. Farley [1998] focuses on using RMI, and also contains
a section describing how to use CORBA with Java. The RMI homepage at
[http://www.javasoft.com/products/jdk/rmi] lists up-to-date resources. The
OMG homepage [http://www.omg.org] is a good starting point on the Web
for information regarding CORBA.

